APPENDIX C

AIR QUALITY BACKGROUND INFORMATION

CRITERIA AIR POLLUTANTS

This appendix presents a brief description of the criteria air pollutants ozone, carbon monoxide, nitrogen dioxide, sulfur dioxide, and particulate matter, including information on adverse health effects and formation processes.

Ozone

Ozone (O_3) is a photochemical oxidant and the primary component of smog. O_3 is not directly emitted into the air but is formed through complex chemical reactions between precursor emissions of organic compounds and oxides of nitrogen in the presence of sunlight. Both organic compounds and oxides of nitrogen are emitted by mobile (transportation) and stationary (industrial) sources. O_3 located in the upper atmosphere (stratosphere) acts in a beneficial manner by shielding Earth from harmful ultraviolet radiation emitted by the sun. However, O_3 located in the lower atmosphere (troposphere) is a major health and environmental concern. Because sunlight and heat serve as catalysts for reactions between O_3 precursors, peak O_3 concentrations typically occur during summer in the northern hemisphere (EPA 2002). In general, O_3 concentrations over or near urban and rural areas reflect an interplay of emissions of ozone precursors, transport meteorology, and atmospheric chemistry (Godish 1991).

The adverse health effects associated with exposure to O_3 primarily pertain to respiratory systems. Scientific evidence indicates that ambient levels of O_3 affect not only sensitive receptors, such as asthmatics and children, but also healthy adults. Exposure to ambient levels of O_3 ranging from 0.10 to 0.40 part per million (ppm) for 1–2 hours has been found to significantly alter lung functions by increasing respiratory rates and pulmonary resistance, decreasing tidal volumes, and impairing respiratory mechanics. Ambient levels of O_3 above 0.12 ppm are linked to symptomatic responses such as throat dryness, chest tightness, shortness of breath, headache, and nausea. In addition, evidence also exists relating O_3 exposure to an increase in the permeability of respiratory epithelia, leading to an increase in responsiveness of the respiratory system to bronchoconstrictive challenges, and the interference or inhibition of the immune system's ability to defend against infection (Godish 1991).

Carbon Monoxide

Carbon monoxide (CO) is a colorless, odorless, and poisonous gas produced by incomplete burning of carbon in fuels, principally from mobile sources of pollution. In fact, 77% of the nationwide CO emissions are from mobile sources. The remaining 23% consists of CO emissions from wood-burning stoves, incinerators, and industrial sources. Peak CO levels are localized near areas with high concentrations of mobile sources and occur typically during winter months when calm air conditions (i.e., not windy) are common.

CO enters the bloodstream through the lungs by combining with hemoglobin, which normally supplies oxygen to the cells. However, CO combines with hemoglobin much more readily than oxygen does, resulting in a drastic reduction in the amount of oxygen available to the cells. Adverse health effects associated with exposure to CO concentrations include dizziness, headaches, slow reflexes, and fatigue. CO exposure is especially harmful to individuals who suffer from cardiovascular and respiratory diseases (EPA 2002).

Nitrogen Dioxide

Nitrogen dioxide (NO_2) is a brownish, highly reactive gas present in all urban environments. The major anthropogenic (human-made) sources of NO_2 are combustion devices, such as boilers, gas turbines, and mobile and stationary reciprocating internal combustion engines. Combustion devices primarily emit nitric oxide (NO), which reacts with oxygen in the atmosphere to form NO_2 (EPA 2002). The combined emissions of NO and NO_2 are referred to as oxides of nitrogen (NO_x), which are reported as equivalent NO_2 . Because NO_2 is formed and depleted by reactions associated with photochemical smog (O_3), the NO_2 concentration in a particular geographical area may not be representative of the local NO_x emission sources.

Inhalation is the most common route of exposure to NO₂. Because NO₂ has relatively low solubility in water, the principal site of toxicity is in the lower respiratory tract. The severity of the adverse health effects depend primarily on the concentration inhaled rather than the duration of exposure. An individual may experience a variety of acute symptoms, including cough, difficulty breathing, vomiting, headache, and eye irritation during or shortly after exposure. After a period of approximately 4–12 hours, an exposed individual may experience chemical pneumonitis or pulmonary edema with breathing abnormalities, cough, hemoptysis, cyanosis, chest pain, and rapid heartbeat. Severe, symptomatic NO₂ intoxication after acute exposure has on occasion been linked with prolonged respiratory impairment with such symptoms as chronic bronchitis and decreased lung functions.

Sulfur Dioxide

Sulfur dioxide (SO_2) is produced by such stationary sources as coal and oil combustion, steel mills, refineries, pulp and paper mills, and nonferrous smelters. The major adverse health effects associated with SO_2 exposure pertain to the upper respiratory tract. SO_2 is a respiratory irritant with bronchoconstriction occurring with inhalation of SO_2 at 5 ppm or more. On contact with the moist mucous membranes, SO_2 produces sulfurous acid, which is a direct irritant. Concentration rather than duration of the exposure is an important determinant of respiratory effects. Exposure to high concentrations of SO_2 may result in edema of the lungs or glottis and respiratory paralysis.

Particulate Matter

Respirable particulate matter 10 micrometers or less in diameter is referred to as PM_{10} . PM_{10} consists of particulates directly emitted into the air, such as fugitive dust, soot, and smoke from mobile and stationary sources, construction operations, fires and natural windblown dust, and particulates formed in the atmosphere by condensation and/or transformation of sulfur dioxide and reactive organic gases (EPA 2002).

The adverse health effects associated with PM_{10} depend on the specific composition of the particulate matter. For example, health effects may be associated with metals, polycyclic aromatic hydrocarbons, and other toxic substances adsorbed onto fine particulates, which is referred to as the piggybacking effect, or with fine dust particles of silica or asbestos. Generally, adverse health effects associated with PM_{10} may result from both short-term and long-term exposure to elevated PM_{10} concentrations and may include breathing and respiratory symptoms, aggravation of existing respiratory and cardiovascular diseases, alterations in the body's immune system, carcinogenesis, and premature death (EPA 2002).

References

Godish, T. 1991. Air Quality. Second edition. Lewis Publishers. Chelsea, MI.

U.S. Environmental Protection Agency (EPA). 2002. Available <www.epa.gov/ttn/chief/ap42/index.html>. Accessed 2002.